Many A/B testing problems come from using statistical methods without checking if they fit the situation. The three most common mistakes are: (1) using the MannMany A/B testing problems come from using statistical methods without checking if they fit the situation. The three most common mistakes are: (1) using the Mann

Three A/B Testing Mistakes I Keep Seeing (And How to Avoid Them)

Over the past few years, I have observed many common errors people make when designing A/B tests and performing post-analysis. In this article, I want to highlight three of these mistakes and explain how they can be avoided.

Using Mann–Whitney to compare medians

The first mistake is the incorrect use of the Mann–Whitney test. This method is widely misunderstood and frequently misused, as many people treat it as a non-parametric “t-test” for medians. In fact, the Mann–Whitney test is designed to determine whether there is a shift between two distributions.

\

When applying the Mann–Whitney test, the hypotheses are defined as follows:

\ We must always consider the assumptions of the test. There are only two:

  • Observations are i.i.d.
  • The distributions have the same shape

\ How to compute the Mann–Whitney statistic:

  1. Sort all observations by magnitude.
  2. Assign ranks to all observations.
  3. Compute the U statistics for both samples.

\

  1. Choose the minimum from these two values
  2. Use statistical tables for the Mann-Whitney U test to find the probability of observing this value of U or lower.

**Since we now know that this test should not be used to compare medians, what should we use instead?

\ Fortunately, in 1945 the statistician Frank Wilcoxon introduced the signed-rank test, now known as the Wilcoxon Signed Rank Test.

The hypotheses for this test match what we originally expected:

How to calculate the Wilcoxon Signed Rank test statistic:

  1. For each paired observation, calculate the difference, keeping both its absolute value and sign.

  2. Sort the absolute differences from smallest to largest and assign ranks.

  3. Compute the test statistic:

    \

  4. The statistic W follows a known distribution. When n is larger than roughly 20, it is approximately normally distributed. This allows us to compute the probability of observing W under the null hypothesis and determine statistical significance.

    \ Some intuition behind the formula:

Using bootstrapping everywhere and for every dataset

The second mistake is applying bootstrapping all the time. I’ve often seen people bootstrap every dataset without first verifying whether bootstrapping is appropriate in that context.

The key assumption behind bootstrapping is

==The sample must be representative of the population from which it was drawn.==

If the sample is biased and poorly represents the population, the bootstrapped statistics will also be biased. That’s why it’s crucial to examine proportions across different cohorts and segments.

For example, if your sample contains only women, while your overall customer base has an equal gender split, bootstrapping is not appropriate.

Always using default Type I and Type II error values

Last but not least is the habit of blindly using default experiment parameters. In about 95% of cases, 99% of analysts and data scientists at 95% of companies stick with defaults: a 5% Type I error rate and a 20% Type II error rate (or 80% test power).

\ Let’s start with why don’t we just set both Type I and Type II error rates to 0%?

==Because doing so would require an infinite sample size, meaning the experiment would never end.==

Clearly, that’s not practical. We must strike a balance between the number of samples we can collect and acceptable error rates.

I encourage people to consider all relevant product constraints.

The most convenient way to do it , create the table ,that you see below, and discuss it with product managers and people who are responsible for the product.

\

For a company like Netflix, even a 1% MDE can translate into substantial profit. For a small startup, that’s not true. Google, on the other hand, can easily run experiments involving tens of millions of users, making it reasonable to set the Type I error rate as low as 0.1% to gain higher confidence in the results.

\


Our path to excellence is paved with mistakes. Let’s make them!

Market Opportunity
B Logo
B Price(B)
$0.18002
$0.18002$0.18002
-2.53%
USD
B (B) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

American Bitcoin’s $5B Nasdaq Debut Puts Trump-Backed Miner in Crypto Spotlight

American Bitcoin’s $5B Nasdaq Debut Puts Trump-Backed Miner in Crypto Spotlight

The post American Bitcoin’s $5B Nasdaq Debut Puts Trump-Backed Miner in Crypto Spotlight appeared on BitcoinEthereumNews.com. Key Takeaways: American Bitcoin (ABTC) surged nearly 85% on its Nasdaq debut, briefly reaching a $5B valuation. The Trump family, alongside Hut 8 Mining, controls 98% of the newly merged crypto-mining entity. Eric Trump called Bitcoin “modern-day gold,” predicting it could reach $1 million per coin. American Bitcoin, a fast-rising crypto mining firm with strong political and institutional backing, has officially entered Wall Street. After merging with Gryphon Digital Mining, the company made its Nasdaq debut under the ticker ABTC, instantly drawing global attention to both its stock performance and its bold vision for Bitcoin’s future. Read More: Trump-Backed Crypto Firm Eyes Asia for Bold Bitcoin Expansion Nasdaq Debut: An Explosive First Day ABTC’s first day of trading proved as dramatic as expected. Shares surged almost 85% at the open, touching a peak of $14 before settling at lower levels by the close. That initial spike valued the company around $5 billion, positioning it as one of 2025’s most-watched listings. At the last session, ABTC has been trading at $7.28 per share, which is a small positive 2.97% per day. Although the price has decelerated since opening highs, analysts note that the company has been off to a strong start and early investor activity is a hard-to-find feat in a newly-launched crypto mining business. According to market watchers, the listing comes at a time of new momentum in the digital asset markets. With Bitcoin trading above $110,000 this quarter, American Bitcoin’s entry comes at a time when both institutional investors and retail traders are showing heightened interest in exposure to Bitcoin-linked equities. Ownership Structure: Trump Family and Hut 8 at the Helm Its management and ownership set up has increased the visibility of the company. The Trump family and the Canadian mining giant Hut 8 Mining jointly own 98 percent…
Share
BitcoinEthereumNews2025/09/18 01:33
Bitcoin ETFs Outpace Ethereum With $2.9B Weekly Surge

Bitcoin ETFs Outpace Ethereum With $2.9B Weekly Surge

The surge follows a difficult August, when investors pulled out more than $750 million while rotating capital into Ethereum-focused funds. […] The post Bitcoin ETFs Outpace Ethereum With $2.9B Weekly Surge appeared first on Coindoo.
Share
Coindoo2025/09/18 01:15
Upbit’s Strategic Move To Boost Trading Pairs

Upbit’s Strategic Move To Boost Trading Pairs

The post Upbit’s Strategic Move To Boost Trading Pairs appeared on BitcoinEthereumNews.com. YieldBasis (YB) Listing: Upbit’s Strategic Move To Boost Trading Pairs
Share
BitcoinEthereumNews2025/12/26 12:41