This article explores the implementation of gradient descent algorithms for minimizing global loss functions in neural networks, particularly in problems governed by Rankine-Hugoniot conditions. While gradient descent reliably converges, scalability issues arise when handling large domains with many coupled networks. To address this, a domain decomposition method (DDM) is introduced, enabling parallel optimization of local loss functions. The result is faster convergence, improved scalability, and a more efficient framework for training complex AI models.This article explores the implementation of gradient descent algorithms for minimizing global loss functions in neural networks, particularly in problems governed by Rankine-Hugoniot conditions. While gradient descent reliably converges, scalability issues arise when handling large domains with many coupled networks. To address this, a domain decomposition method (DDM) is introduced, enabling parallel optimization of local loss functions. The result is faster convergence, improved scalability, and a more efficient framework for training complex AI models.

Why Gradient Descent Converges (and Sometimes Doesn’t) in Neural Networks

2025/09/19 18:38

Abstract and 1. Introduction

1.1. Introductory remarks

1.2. Basics of neural networks

1.3. About the entropy of direct PINN methods

1.4. Organization of the paper

  1. Non-diffusive neural network solver for one dimensional scalar HCLs

    2.1. One shock wave

    2.2. Arbitrary number of shock waves

    2.3. Shock wave generation

    2.4. Shock wave interaction

    2.5. Non-diffusive neural network solver for one dimensional systems of CLs

    2.6. Efficient initial wave decomposition

  2. Gradient descent algorithm and efficient implementation

    3.1. Classical gradient descent algorithm for HCLs

    3.2. Gradient descent and domain decomposition methods

  3. Numerics

    4.1. Practical implementations

    4.2. Basic tests and convergence for 1 and 2 shock wave problems

    4.3. Shock wave generation

    4.4. Shock-Shock interaction

    4.5. Entropy solution

    4.6. Domain decomposition

    4.7. Nonlinear systems

  4. Conclusion and References

3. Gradient descent algorithm and efficient implementation

In this section we discuss the implementation of gradient descent algorithms for solving the minimization problems (11), (20) and (35). We note that these problems involve a global loss functional measuring the residue of HCL in the whole domain, as well Rankine-Hugoniot conditions, which results in training of a number of neural networks. In all the tests we have done, the gradient descent method converges and provides accurate results. We note also, that in problems with a large number of DLs, the global loss functional couples a large number of networks and the gradient descent algorithm may converge slowly. For these problems we present a domain decomposition method (DDM).

3.1. Classical gradient descent algorithm for HCLs

All the problems (11), (20) and (35) being similar, we will demonstrate in details the algorithm for the problem (20). We assume that the solution is initially constituted by i) D ∈ {1, 2, . . . , } entropic shock waves emanating from x1, . . . , xD, ii) an arbitrary number of rarefaction waves, and that iii) there is no shock generation for t ∈ [0, T].

\

\

3.2. Gradient descent and domain decomposition methods

Rather than minimizing the global loss function (21) (or (12), (36)), we here propose to decouple the optimization of the neural networks, and make it scalable. The approach is closely connected to domain decomposition methods (DDMs) Schwarz Waveform Relaxation (SWR) methods [21, 22, 23]. The resulting algorithm allows for embarrassingly parallel computation of minimization of local loss functions.

\ \

\ \ \

\ \ \

\ \ In conclusion, the DDM becomes relevant thanks to its scalability and for kDDMkLocal < kGlobal, which is expected for D large.

\

:::info Authors:

(1) Emmanuel LORIN, School of Mathematics and Statistics, Carleton University, Ottawa, Canada, K1S 5B6 and Centre de Recherches Mathematiques, Universit´e de Montr´eal, Montreal, Canada, H3T 1J4 (elorin@math.carleton.ca);

(2) Arian NOVRUZI, a Corresponding Author from Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON K1N 6N5, Canada (novruzi@uottawa.ca).

:::


:::info This paper is available on arxiv under CC by 4.0 Deed (Attribution 4.0 International) license.

:::

\

Aviso legal: Los artículos republicados en este sitio provienen de plataformas públicas y se ofrecen únicamente con fines informativos. No reflejan necesariamente la opinión de MEXC. Todos los derechos pertenecen a los autores originales. Si consideras que algún contenido infringe derechos de terceros, comunícate con service@support.mexc.com para solicitar su eliminación. MEXC no garantiza la exactitud, la integridad ni la actualidad del contenido y no se responsabiliza por acciones tomadas en función de la información proporcionada. El contenido no constituye asesoría financiera, legal ni profesional, ni debe interpretarse como recomendación o respaldo por parte de MEXC.
Compartir perspectivas

También te puede interesar

X Cracks Down on Bribery Network Behind Crypto Scam Accounts

X Cracks Down on Bribery Network Behind Crypto Scam Accounts

The post X Cracks Down on Bribery Network Behind Crypto Scam Accounts appeared on BitcoinEthereumNews.com. X has vowed a strict crackdown after exposing a bribery network tied to crypto scam accounts. The platform said suspended users involved in fraudulent schemes attempted to bribe employees through middlemen to restore access, threatening platform integrity. Crypto Fraud Rings Exploit X Platform Through Bribery According to Global Government Affairs at X, these accounts had been suspended for exploiting users through scams, many involving cryptocurrencies. Rather than undergoing the formal reinstatement procedures, offenders offered to give money to those working within the company to restore their accounts. The company said the practice violated platform integrity and risked enabling further fraud. The platform stated that the suspended accounts were controlled by organized groups that operated unlawful investments, counterfeit giveaways, and token pump-and-dump deals. X has exposed and is taking strong action against a bribery network targeting our platform. Suspended accounts involved in crypto scams and platform manipulation paid middlemen to attempt to bribe employees to reinstate their suspended accounts. These perpetrators exploit social… — Global Government Affairs (@GlobalAffairs) September 19, 2025 Users were normally attracted through false adverts. Then, they are directed to other websites where the malicious actors can steal their details and cause them to lose their money. Last month, crypto hacks surged by 15%, with $91 million in Bitcoin theft alone. This underscores the scale of risks tied to fraudulent schemes. These criminal networks do not restrict themselves to one site. The announcement states that these groups utilize other platforms to reach more individuals as well. X also discovered that criminal organizations such as The Com are linked to the bribe network. This group has been linked to several cyber-fraud incidents. These networks bribed employees to reactivate accounts which were suspended for suspected scam activities. The company emphasized that bribery attempts are part of a broader effort by…
Compartir
BitcoinEthereumNews2025/09/20 03:50
Compartir