A Mathematical Model for Extreme Programming Software Development

2025/08/26 09:48

Abstract and 1. Introduction

  1. Background and 2.1. Related Work

    2.2. The Impact of XP Practices on Software Productivity and Quality

    2.3. Bayesian Network Modelling

  2. Model Design

    3.1. Model Overview

    3.2. Team Velocity Model

    3.3. Defected Story Points Model

  3. Model Validation

    4.1. Experiments Setup

    4.2. Results and Discussion

  4. Conclusions and References

ABSTRACT

A Bayesian Network based mathematical model has been used for modelling Extreme Programming software development process. The model is capable of predicting the expected finish time and the expected defect rate for each XP release. Therefore, it can be used to determine the success/failure of any XP Project. The model takes into account the effect of three XP practices, namely: Pair Programming, Test Driven Development and Onsite Customer practices. The model’s predictions were validated against two case studies. Results show the precision of our model especially in predicting the project finish time.

1. INTRODUCTION

Extreme Programming (XP) is a lightweight software development methodology. XP is one of the iterative informal development methodologies known as Agile methods. XP comprises a number of values, practices and principles. There is no large requirements and design documents. XP uses what is called User Stories instead of requirements. The XP project comprises of a number of User Stories. Each user stories contains a number of Story Points. The development process constructed from iterative small releases. In each release, User Stories are selected to be developed in this release according to their importance.

\ Managers of XP projects suffer from lack of prediction systems capable of estimating the expected effort and quality of the software development process. Managers need to know the probability of success or failure of XP project. Models capable of predicting the project finish time are very helpful to the project managers. Those models should also be capable of predicting the product quality in terms of the expected number of defects. These requirements should be covered in strong mathematical model.

\ In this paper, a Bayesian Network based mathematical model for XP process is presented. The proposed model satisfies the following features:

\

  • It considers the iterative nature of XP by modelling the project as a number of sequential releases.

    \

  • The model able to predict the expected finish time, and therefore it could determine the success/failure of the project.

    \

  • The prediction can be done in the project planning phase before starting the actual development using very simple input data.

    \

  • The model tracks the developer velocity (measured in number of Story Points per day) as function of the developer experience. It also models the increase in the developer velocity as the project goes on.

\

  • The model considers the effect of the Pair Programming and Test Driven Development practices on the Team velocity.

    \

  • The model predicts the process quality by measuring the defect rate in each release.

    \

  • It considers the effect of the Onsite Customer and Test Driven Development practices on the defect rate.

\ The proposed model was implemented using AgenaRisk toolset [1]; a toolset for modelling risk and making predictions based on Bayesian Network. Two case studies were used for the validation of our model. Results show the precision of our model especially in predicting the project finish time.

\ This paper is organized as follows: in the next section, a survey of the related work and an overview of the Bayesian Network will be provided. Model Design is illustrated in section 3, while the validation is provided in section 4. Finally, conclusions are offered in the last section.

\

:::info This paper is available on arxiv under CC BY-NC-ND 4.0 DEED license.

:::

:::info Authors:

(1) Mohamed Abouelelam, Software System Engineering, University of Regina, Regina, Canada;

(2) Luigi Benedicenti, Software System Engineering, University of Regina, Regina, Canada.

:::

\

Clause de non-responsabilité : les articles republiés sur ce site proviennent de plateformes publiques et sont fournis à titre informatif uniquement. Ils ne reflètent pas nécessairement les opinions de MEXC. Tous les droits restent la propriété des auteurs d'origine. Si vous estimez qu'un contenu porte atteinte aux droits d'un tiers, veuillez contacter service@support.mexc.com pour demander sa suppression. MEXC ne garantit ni l'exactitude, ni l'exhaustivité, ni l'actualité des contenus, et décline toute responsabilité quant aux actions entreprises sur la base des informations fournies. Ces contenus ne constituent pas des conseils financiers, juridiques ou professionnels, et ne doivent pas être interprétés comme une recommandation ou une approbation de la part de MEXC.
Partager des idées

Vous aimerez peut-être aussi

Nasdaq-listed Metalpha deploys Bitcoin liquidity via Zeus Network on Solana

Nasdaq-listed Metalpha deploys Bitcoin liquidity via Zeus Network on Solana

PANews reported on August 25th that Zeus Network has officially announced a strategic liquidity partnership with Metalpha (NASDAQ: MATH), enabling Bitcoin deposits through APOLLO, the first decentralized application (dApp) on Zeus Network. Metalpha, an institutional asset management firm focused on digital assets, has begun accepting Bitcoin deposits through the Zeus Network on Solana. As part of this partnership, Metalpha will leverage Zeus Network's permissionless infrastructure as a liquidity provider, supporting network security through decentralized verification. The Metalpha team chose Solana to deploy Bitcoin liquidity because of its high-performance DeFi environment and highly active community. By providing Bitcoin to Zeus Network, Metalpha injects liquidity into Solana and strengthens the security of cross-chain Bitcoin transactions, seeking new avenues for sustainable on-chain yield generation. As Solana becomes a major hub for institutional-grade digital asset innovation, Zeus Network is expanding its ecosystem to ensure that Bitcoin liquidity remains fundamental to DeFi growth. Leveraging Metalpha's expertise in structured financial products and risk management, this partnership is expected to enhance the financial capabilities of the Solana network and Bitcoin as an asset, adding fuel to the already booming DeFi market. Justin Wang, co-founder and CEO of Zeus Network, said: “With Metalpha joining Zeus Network as a liquidity provider, we can leverage their experience in digital asset management to continue developing more accessible and scalable Bitcoin liquidity solutions for institutional Bitcoin holders.”
Partager
PANews2025/08/26 21:00
Partager