The post How Bitcoin stays alive when banks and card networks go down appeared on BitcoinEthereumNews.com. In 2019, Rodolfo Novak sent a Bitcoin transaction from Toronto to Michigan without internet or satellite. He used a ham radio, the 40-meter band, and the ionosphere as his relay. Nick Szabo called it “Bitcoin sent over national border without internet or satellite, just nature’s ionosphere.” The transaction was tiny, the setup finicky, and the use case borderline absurd. Yet, it proved something: the protocol doesn’t care what carries its packets. That experiment sits at one end of a decade-long stress test the Bitcoin community runs quietly in the background, a distributed R&D program testing whether the network can function when the usual infrastructure fails. Satellites broadcast blocks to dishes across continents. Mesh radios relay transactions across neighborhoods without the need for ISPs. Tor routes traffic around censors. Ham operators tap out hexadecimal over shortwave. These aren’t production systems. They’re fire drills for scenarios most payment networks treat as edge cases. The question driving it all: if the internet fragments, how fast can Bitcoin come back online? Satellites give Bitcoin an independent clock Blockstream Satellite broadcasts the full Bitcoin blockchain 24/7 via four geostationary satellites covering most populated regions. A node with an inexpensive dish and a Ku-band receiver can sync blocks and stay in consensus even if local ISPs go dark. The system is one-way and low-bandwidth, but it solves a specific problem: during regional blackouts or censorship, nodes need an independent source of truth for the ledger state. The satellite API extends this further. Anyone can uplink arbitrary data, including signed transactions, from ground stations for global broadcast. goTenna partnered with Blockstream to let users compose transactions on offline Android phones, relay them via local mesh, then hand them to a satellite uplink that broadcasts without touching the wider internet. The bandwidth is terrible, but the independence is… The post How Bitcoin stays alive when banks and card networks go down appeared on BitcoinEthereumNews.com. In 2019, Rodolfo Novak sent a Bitcoin transaction from Toronto to Michigan without internet or satellite. He used a ham radio, the 40-meter band, and the ionosphere as his relay. Nick Szabo called it “Bitcoin sent over national border without internet or satellite, just nature’s ionosphere.” The transaction was tiny, the setup finicky, and the use case borderline absurd. Yet, it proved something: the protocol doesn’t care what carries its packets. That experiment sits at one end of a decade-long stress test the Bitcoin community runs quietly in the background, a distributed R&D program testing whether the network can function when the usual infrastructure fails. Satellites broadcast blocks to dishes across continents. Mesh radios relay transactions across neighborhoods without the need for ISPs. Tor routes traffic around censors. Ham operators tap out hexadecimal over shortwave. These aren’t production systems. They’re fire drills for scenarios most payment networks treat as edge cases. The question driving it all: if the internet fragments, how fast can Bitcoin come back online? Satellites give Bitcoin an independent clock Blockstream Satellite broadcasts the full Bitcoin blockchain 24/7 via four geostationary satellites covering most populated regions. A node with an inexpensive dish and a Ku-band receiver can sync blocks and stay in consensus even if local ISPs go dark. The system is one-way and low-bandwidth, but it solves a specific problem: during regional blackouts or censorship, nodes need an independent source of truth for the ledger state. The satellite API extends this further. Anyone can uplink arbitrary data, including signed transactions, from ground stations for global broadcast. goTenna partnered with Blockstream to let users compose transactions on offline Android phones, relay them via local mesh, then hand them to a satellite uplink that broadcasts without touching the wider internet. The bandwidth is terrible, but the independence is…

How Bitcoin stays alive when banks and card networks go down

2025/11/23 15:03

In 2019, Rodolfo Novak sent a Bitcoin transaction from Toronto to Michigan without internet or satellite. He used a ham radio, the 40-meter band, and the ionosphere as his relay.

Nick Szabo called it “Bitcoin sent over national border without internet or satellite, just nature’s ionosphere.” The transaction was tiny, the setup finicky, and the use case borderline absurd.

Yet, it proved something: the protocol doesn’t care what carries its packets.

That experiment sits at one end of a decade-long stress test the Bitcoin community runs quietly in the background, a distributed R&D program testing whether the network can function when the usual infrastructure fails.

Satellites broadcast blocks to dishes across continents. Mesh radios relay transactions across neighborhoods without the need for ISPs. Tor routes traffic around censors. Ham operators tap out hexadecimal over shortwave.

These aren’t production systems. They’re fire drills for scenarios most payment networks treat as edge cases.

The question driving it all: if the internet fragments, how fast can Bitcoin come back online?

Satellites give Bitcoin an independent clock

Blockstream Satellite broadcasts the full Bitcoin blockchain 24/7 via four geostationary satellites covering most populated regions.

A node with an inexpensive dish and a Ku-band receiver can sync blocks and stay in consensus even if local ISPs go dark.

The system is one-way and low-bandwidth, but it solves a specific problem: during regional blackouts or censorship, nodes need an independent source of truth for the ledger state.

The satellite API extends this further. Anyone can uplink arbitrary data, including signed transactions, from ground stations for global broadcast. goTenna partnered with Blockstream to let users compose transactions on offline Android phones, relay them via local mesh, then hand them to a satellite uplink that broadcasts without touching the wider internet.

The bandwidth is terrible, but the independence is absolute.

This matters because satellites provide an “out-of-band” channel. When regular routing fails, nodes scattered across different continents can still receive the same chain tip from space, providing a shared reference point for rebuilding consensus once terrestrial links return.

Mesh and LoRa build Bitcoin backhaul at human scale

Mesh networks take a different approach: instead of broadcasting from orbit, they relay packets device-to-device across short hops until one node with internet access rebroadcasts to the broader network. TxTenna, built by goTenna, demonstrated this in 2019.

Users send signed transactions over a mesh network from offline phones, hopping node to node until reaching an exit point. Coin Center documented the architecture: each hop extends reach without requiring any participant to have direct internet access.

Long-range LoRa mesh pushes this concept further. Locha Mesh, started by Bitcoin Venezuela, builds radio nodes that form an IPv6 mesh over license-free bands.

The hardware, Turpial and Harpia devices, can carry messages, Bitcoin transactions, and even block sync over several kilometers without an internet connection.

Tests in disaster zones proved successful crypto transactions across multi-hop networks where cellular and fiber were both down.

Darkwire fragments raw Bitcoin transactions into small packets and relays them hop-by-hop over LoRa radios. Each node reaches roughly 10 kilometers of line of sight, turning a neighborhood of hobbyist radios into ad hoc Bitcoin infrastructure.

Urban range drops to a 3 to 5 kilometers range, but that’s enough to route around localized outages or censorship chokepoints.

Academic projects like LNMesh extended this logic to Lightning Network payments, demonstrating offline micropayments over local wireless mesh during power outages.

The volumes are small and the setups fragile, but they establish the principle: Bitcoin’s physical layer is fungible. As long as there exists a path between the nodes, the protocol functions.

Tor and ham radio fill the gaps

Tor represents the middle ground between the regular internet and exotic radio. Since Bitcoin Core 0.12, nodes automatically start a hidden service if a local Tor daemon is running, accepting connections via .onion addresses even when ISPs block known Bitcoin ports.

The Bitcoin Wiki and Jameson Lopp’s setup guides document dual-stack configurations in which nodes route traffic over both clearnet and Tor simultaneously, complicating efforts to censor Bitcoin traffic at the ISP level.

Experts warn against running nodes exclusively over Tor due to eclipse-attack risks, but using it as one routing option among several substantially raises the cost of blocking Bitcoin infrastructure.

Ham radio sits at the far end of the spectrum. Beyond Novak’s ionosphere experiment, operators have relayed Lightning payments via amateur radio frequencies.

These tests involve manually encoding transactions, transmitting them over HF bands using protocols like JS8Call, then decoding and rebroadcasting on the other side.

The throughput is laughable by modern standards, but the point isn’t efficiency. The point is demonstrating that Bitcoin can move across any medium capable of carrying small data packets, including ones that predate the internet by decades.

What a global partition actually looks like

Recent modeling explores what happens during a prolonged global internet outage.

One scenario splits the network into three regions, Americas, Asia-Pacific, and Europe-Africa, with roughly 45%, 35%, and 20% of hash rate, respectively.

Each partition’s miners continue producing blocks while adjusting the difficulty independently. Local exchanges build their own fee markets and order books on diverging chains.

Within each partition, Bitcoin continues working. Transactions confirmed, balances updated, local commerce proceeds, but only within that island. Cross-border trade freezes. When connectivity returns, nodes face multiple valid chains.

The consensus rule is deterministic: follow the chain with the most cumulative proof of work. Weaker partitions are reorganized, and some recent transactions are removed from global history.

If the outage lasts hours to a day and the hash distribution isn’t wildly skewed, the result is temporary chaos followed by convergence as bandwidth returns and blocks propagate.

Prolonged outages create the risk that social coordination will override protocol rules, exchanges, or that large miners will choose their preferred history. Still, even that remains visible and rule-bound in ways that traditional financial reconciliation is not.

Banks don’t have fire drills for this

Contrast that with what happens when payment infrastructure breaks. TARGET2’s 10-hour outage in October 2020 delayed SEPA files and forced central banks to manage liquidity and collateral manually.

Visa’s Europe-wide failure in June 2018 saw 2.4 million UK card transactions fail outright and ATMs run dry within hours after a single data center switch died.

The ECB’s TARGET system suffered another major outage in February 2025, prompting external audits after backup systems failed to activate.

IMF and BIS documentation on CBDC and RTGS resilience explicitly warns that large-scale power or network outages can simultaneously hit primary and backup data centers, and that centralized payment systems require complex business-continuity planning to avoid systemic disruption.

The architectural difference matters. Every Bitcoin node holds a full copy of the ledger and validation rules.

After any outage, as soon as it can communicate with other nodes, via satellite, Tor, mesh, or restored ISP, it simply asks: what’s the heaviest valid chain?

The protocol defines the resolution mechanism. No central operator reconciles competing databases.

Banks depend on a layered, centralized infrastructure comprising core banking ledgers, RTGS systems such as Fedwire and TARGET, card networks, ACH, and clearinghouses.

Recovery involves replaying queued transactions, reconciling mismatched snapshots, sometimes manually adjusting balances, then bringing hundreds of intermediaries back into sync.

Visa’s 2018 outage took hours to diagnose despite a full-time operations team. The ECB’s TARGET incidents required external reviews and multi-month remediation plans.

Bitcoin practices for worst-case scenarios

So, in a crisis, a plausible scenario emerges: a subset of miners and nodes stays synchronized via satellite and radio, maintaining an authoritative chain tip even as fiber and mobile networks fail.

As connectivity returns in patches, local nodes pull missing blocks and reorganize to that chain within minutes to hours.

Meanwhile, banks figure out which payment batches settled, reschedule missed ACH files, and wait for RTGS systems to complete end-of-day reconciliation before reopening fully.

This doesn’t mean Bitcoin “wins” instantly. Card rails and cash still matter for consumers. But as a global settlement layer, it might reach a consistent state faster than a patchwork of national payment systems, precisely because it’s been running continuous fire drills for world-scale failure modes.

The ham operators tapping out transactions over shortwave, the Venezuelan mesh nodes routing sats across blackout neighborhoods, the satellites broadcasting blocks to dishes pointed at the sky, and these aren’t production infrastructure.

They’re proof that when the usual pipes break, Bitcoin has a Plan B. And a Plan C. And a Plan D that involves the ionosphere.

The banking system still treats infrastructure failures as rare edge cases. Bitcoin is treating it as a design constraint.

Mentioned in this article

Source: https://cryptoslate.com/the-internet-blackout-playbook-how-bitcoin-stays-alive-when-banks-and-card-networks-go-down/

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Volante Technologies Customers Successfully Navigate Critical Regulatory Deadlines for EU SEPA Instant and Global SWIFT Cross-Border Payments

Volante Technologies Customers Successfully Navigate Critical Regulatory Deadlines for EU SEPA Instant and Global SWIFT Cross-Border Payments

PaaS leader ensures seamless migrations and uninterrupted payment operations LONDON–(BUSINESS WIRE)–Volante Technologies, the global leader in Payments as a Service
Share
AI Journal2025/12/16 17:16
Fed Acts on Economic Signals with Rate Cut

Fed Acts on Economic Signals with Rate Cut

In a significant pivot, the Federal Reserve reduced its benchmark interest rate following a prolonged ten-month hiatus. This decision, reflecting a strategic response to the current economic climate, has captured attention across financial sectors, with both market participants and policymakers keenly evaluating its potential impact.Continue Reading:Fed Acts on Economic Signals with Rate Cut
Share
Coinstats2025/09/18 02:28
Google's AP2 protocol has been released. Does encrypted AI still have a chance?

Google's AP2 protocol has been released. Does encrypted AI still have a chance?

Following the MCP and A2A protocols, the AI Agent market has seen another blockbuster arrival: the Agent Payments Protocol (AP2), developed by Google. This will clearly further enhance AI Agents' autonomous multi-tasking capabilities, but the unfortunate reality is that it has little to do with web3AI. Let's take a closer look: What problem does AP2 solve? Simply put, the MCP protocol is like a universal hook, enabling AI agents to connect to various external tools and data sources; A2A is a team collaboration communication protocol that allows multiple AI agents to cooperate with each other to complete complex tasks; AP2 completes the last piece of the puzzle - payment capability. In other words, MCP opens up connectivity, A2A promotes collaboration efficiency, and AP2 achieves value exchange. The arrival of AP2 truly injects "soul" into the autonomous collaboration and task execution of Multi-Agents. Imagine AI Agents connecting Qunar, Meituan, and Didi to complete the booking of flights, hotels, and car rentals, but then getting stuck at the point of "self-payment." What's the point of all that multitasking? So, remember this: AP2 is an extension of MCP+A2A, solving the last mile problem of AI Agent automated execution. What are the technical highlights of AP2? The core innovation of AP2 is the Mandates mechanism, which is divided into real-time authorization mode and delegated authorization mode. Real-time authorization is easy to understand. The AI Agent finds the product and shows it to you. The operation can only be performed after the user signs. Delegated authorization requires the user to set rules in advance, such as only buying the iPhone 17 when the price drops to 5,000. The AI Agent monitors the trigger conditions and executes automatically. The implementation logic is cryptographically signed using Verifiable Credentials (VCs). Users can set complex commission conditions, including price ranges, time limits, and payment method priorities, forming a tamper-proof digital contract. Once signed, the AI Agent executes according to the conditions, with VCs ensuring auditability and security at every step. Of particular note is the "A2A x402" extension, a technical component developed by Google specifically for crypto payments, developed in collaboration with Coinbase and the Ethereum Foundation. This extension enables AI Agents to seamlessly process stablecoins, ETH, and other blockchain assets, supporting native payment scenarios within the Web3 ecosystem. What kind of imagination space can AP2 bring? After analyzing the technical principles, do you think that's it? Yes, in fact, the AP2 is boring when it is disassembled alone. Its real charm lies in connecting and opening up the "MCP+A2A+AP2" technology stack, completely opening up the complete link of AI Agent's autonomous analysis+execution+payment. From now on, AI Agents can open up many application scenarios. For example, AI Agents for stock investment and financial management can help us monitor the market 24/7 and conduct independent transactions. Enterprise procurement AI Agents can automatically replenish and renew without human intervention. AP2's complementary payment capabilities will further expand the penetration of the Agent-to-Agent economy into more scenarios. Google obviously understands that after the technical framework is established, the ecological implementation must be relied upon, so it has brought in more than 60 partners to develop it, almost covering the entire payment and business ecosystem. Interestingly, it also involves major Crypto players such as Ethereum, Coinbase, MetaMask, and Sui. Combined with the current trend of currency and stock integration, the imagination space has been doubled. Is web3 AI really dead? Not entirely. Google's AP2 looks complete, but it only achieves technical compatibility with Crypto payments. It can only be regarded as an extension of the traditional authorization framework and belongs to the category of automated execution. There is a "paradigm" difference between it and the autonomous asset management pursued by pure Crypto native solutions. The Crypto-native solutions under exploration are taking the "decentralized custody + on-chain verification" route, including AI Agent autonomous asset management, AI Agent autonomous transactions (DeFAI), AI Agent digital identity and on-chain reputation system (ERC-8004...), AI Agent on-chain governance DAO framework, AI Agent NPC and digital avatars, and many other interesting and fun directions. Ultimately, once users get used to AI Agent payments in traditional fields, their acceptance of AI Agents autonomously owning digital assets will also increase. And for those scenarios that AP2 cannot reach, such as anonymous transactions, censorship-resistant payments, and decentralized asset management, there will always be a time for crypto-native solutions to show their strength? The two are more likely to be complementary rather than competitive, but to be honest, the key technological advancements behind AI Agents currently all come from web2AI, and web3AI still needs to keep up the good work!
Share
PANews2025/09/18 07:00