This report documents the successful deployment of a quantum memory architecture that combines dynamical decoupling (Hahn Echo) with mid-circuit qubit recyclingThis report documents the successful deployment of a quantum memory architecture that combines dynamical decoupling (Hahn Echo) with mid-circuit qubit recycling

Experiment Log: Validating Echo-Stabilized Recursive Routing on IBM Heron

This report documents the successful deployment of a quantum memory architecture that combines dynamical decoupling (Hahn Echo) with mid-circuit qubit recycling. The experiment was executed on the IBM ibm_torino processor. The data confirms that a qubit state can be actively stabilized against dephasing while the surrounding circuit resources are reset and reused in real-time.

The Engineering Constraints

Running complex circuits on current hardware faces two primary failure modes:

  1. Limited Qubit Count: Running out of physical registers for routing.
  2. Decoherence ($T_2$ Decay): Information loss due to magnetic noise during idle periods.

The "Echo-Stabilized Recursive Link" addresses both by running two operations in parallel:

  • Perceptual Grid Engine Architecture: Teleporting data, then immediately resetting the "Sender" qubits to the ground state $|0\rangle$ to free them for new tasks.
  • Active Stabilization: Applying an $X_{\pi}$ pulse sequence to the "Buffer" qubit to refocus the state vector and cancel low-frequency noise during the hold duration.

Implementation

The experiment utilized a 3-qubit register managed by Qiskit 1.3 primitives.

  • Q0 (Source): Encoded with a "Pilot State" ($Ry(\theta)$), aiming for a 75% probability of $|0\rangle$.
  • Q1 (Bridge): Used for entanglement generation.
  • Q2 (Buffer): Used for storage.

The Control Logic:

The following Python function was deployed to the Quantum Processing Unit (QPU). It enforces a conditional reset on Q0/Q1 while simultaneously executing the Hahn Echo on Q2.

def create_stabilized_circuit(delay_us=20): # Setup Registers qr = QuantumRegister(3, 'q') cr_hop1 = ClassicalRegister(2, 'hop1') cr_hop2 = ClassicalRegister(2, 'hop2') cr_final = ClassicalRegister(1, 'result') qc = QuantumCircuit(qr, cr_hop1, cr_hop2, cr_final) # 1. Initialize Pilot State (~75% |0>) qc.ry(2 * np.arccos(np.sqrt(0.75)), 0) qc.barrier() # 2. Outbound Teleportation (Source -> Buffer) qc.h(1) qc.cx(1, 2) qc.cx(0, 1) qc.h(0) qc.measure(0, cr_hop1[0]) qc.measure(1, cr_hop1[1]) # Feed Forward Correction with qc.if_test((cr_hop1[1], 1)): qc.x(2) with qc.if_test((cr_hop1[0], 1)): qc.z(2) qc.barrier() # 3. Parallel Operation (The Innovation) # A. Reset Sender/Bridge for Reuse qc.reset(0) qc.reset(1) # B. Hahn Echo on Buffer if delay_us > 0: half_wait = delay_us / 2 qc.delay(half_wait, 2, unit='us') qc.x(2) # Invert qc.delay(half_wait, 2, unit='us') qc.x(2) # Restore qc.barrier() # 4. Inbound Teleportation (Buffer -> Recycled Source) qc.h(1) qc.cx(1, 0) # Entangle with the freshly reset q0 qc.cx(2, 1) qc.h(2) qc.measure(2, cr_hop2[0]) qc.measure(1, cr_hop2[1]) with qc.if_test((cr_hop2[1], 1)): qc.x(0) with qc.if_test((cr_hop2[0], 1)): qc.z(0) # 5. Verification qc.measure(0, cr_final) return qc

Hardware Results

The circuit was executed on the ibm_torino system (Heron processor) with two distinct configurations to isolate variables.

1. Structural Baseline ($0\mu s$ Delay)

  • Purpose: Verify the logic of the mid-circuit reset and routing without the penalty of time decay.
  • Target: 75.00%
  • Measured: 71.66%
  • Result: Validated. The reset operation successfully cleared the qubits for reuse.

2. Active Stabilization Test ($20\mu s$ Delay)

  • Purpose: Verify that the Hahn Echo sequence preserves the state during a hold period greater than zero.
  • Target: 75.00%
  • Measured: 68.70%
  • Result: Validated. Signal loss was restricted to <3% compared to the baseline.

Conclusion

The data indicates that the "Echo-Stabilized Recursive Link" is a viable architecture for NISQ hardware. The system successfully maintained signal integrity significantly above the random noise floor (50%), proving that dynamic qubit reuse and active error suppression can be executed concurrently.

Methodology Note

This project was executed using a "Centaur" workflow. I, Damian Griggs, acted as the Architect, defining the system constraints, logic, and experimental design. The code generation and syntax validation were handled by an AI agent (Gemini) acting as the functional builder. This separation of concerns allowed for rapid prototyping and deployment to the physical hardware.

\ \ Want to see the full code on GitHub?

https://github.com/damianwgriggs/Perceptual-Grid-Engine-Quantum-Experiment/blob/main/Echo-Stabilized%20Recursive%20Link.ipynb

Market Opportunity
Echo Logo
Echo Price(ECHO)
$0.01402
$0.01402$0.01402
-0.28%
USD
Echo (ECHO) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

What Could Help Pi Coin Rebound?

What Could Help Pi Coin Rebound?

The post What Could Help Pi Coin Rebound? appeared on BitcoinEthereumNews.com. Pi Coin has extended its decline for a third straight week, falling sharply from
Share
BitcoinEthereumNews2025/12/19 21:09
Foreigner’s Lou Gramm Revisits The Band’s Classic ‘4’ Album, Now Reissued

Foreigner’s Lou Gramm Revisits The Band’s Classic ‘4’ Album, Now Reissued

The post Foreigner’s Lou Gramm Revisits The Band’s Classic ‘4’ Album, Now Reissued appeared on BitcoinEthereumNews.com. American-based rock band Foreigner performs onstage at the Rosemont Horizon, Rosemont, Illinois, November 8, 1981. Pictured are, from left, Mick Jones, on guitar, and vocalist Lou Gramm. (Photo by Paul Natkin/Getty Images) Getty Images Singer Lou Gramm has a vivid memory of recording the ballad “Waiting for a Girl Like You” at New York City’s Electric Lady Studio for his band Foreigner more than 40 years ago. Gramm was adding his vocals for the track in the control room on the other side of the glass when he noticed a beautiful woman walking through the door. “She sits on the sofa in front of the board,” he says. “She looked at me while I was singing. And every now and then, she had a little smile on her face. I’m not sure what that was, but it was driving me crazy. “And at the end of the song, when I’m singing the ad-libs and stuff like that, she gets up,” he continues. “She gives me a little smile and walks out of the room. And when the song ended, I would look up every now and then to see where Mick [Jones] and Mutt [Lange] were, and they were pushing buttons and turning knobs. They were not aware that she was even in the room. So when the song ended, I said, ‘Guys, who was that woman who walked in? She was beautiful.’ And they looked at each other, and they went, ‘What are you talking about? We didn’t see anything.’ But you know what? I think they put her up to it. Doesn’t that sound more like them?” “Waiting for a Girl Like You” became a massive hit in 1981 for Foreigner off their album 4, which peaked at number one on the Billboard chart for 10 weeks and…
Share
BitcoinEthereumNews2025/09/18 01:26
Why BitDelta’s Winter WonderTrade Stands Out

Why BitDelta’s Winter WonderTrade Stands Out

The post Why BitDelta’s Winter WonderTrade Stands Out appeared on BitcoinEthereumNews.com. Crypto Projects As the crypto market widens in scope and participation
Share
BitcoinEthereumNews2025/12/19 21:26