馬斯克將 X 推薦演算法改寫成 Transformer 架構並開源,但未公開模型權重與訓練資料。 (前情提要:馬斯克線上維權 OpenAI:昔日「榜一大哥」怒索 1340 億美元,情懷終究敗給了生意? ) (背景補充:在 X 平台上寫文章賺錢的終極指南》馬斯克推出X Articles加倍收益、設定受眾、提出事實、刪減廢話、宣傳訂閱.. ) 美國時間 1 月 20 日,Elon Musk 將 X 平台推薦演算法的新代碼「Phoenix」上傳至 GitHub。文件顯示,系統已從過去的手動特徵工程全面轉向以 Transformer 為核心的 AI 架構,但並未將模型權重與訓練資料一起釋出。 從硬規則到 AI 預測的全面切換 過去十多年,X(前身 Twitter)的推文排序主要依賴工程師寫定的「如果…就…」規則,例如關鍵字、追蹤關係或停留時間。根據現在 X 披露的代碼結構,Phoenix 已移除大部分手動特徵,改以與 xAI 旗下 Grok 同源的 Transformer 解析使用者行為序列。 按讚、分享、封鎖、瀏覽時長等動作被視為連續事件,模型透過機率分布預測下一步,決定內容曝光程度和範圍。 推薦分數公式顯示「注意力經濟」 在Git文件中,能見到最核心的計算邏輯被簡化成: Score = Σ (Probability × Weight) 這說明包含估算使用者對單則推文觸發各種行為的機率,再乘以平台設定的權重。 舉例而言,若按讚機率 60%、封鎖機率 5%,而平台對「按讚」給予正權重,「封鎖」給予負權重,最終分數將直接影響該推文是否進入推薦流。文件指出,停留時間甚至能被量化至秒級,意味內容創作者將更被演算法導向「留人」目標,至於各行為具體權重值,代碼庫並未揭露。 開源範圍與黑盒邊界 雖然程式碼可供瀏覽,真實模型參數與完整訓練資料並未公開。市場分析認為,相較 TikTok 或 Meta 的完全封閉,Phoenix 至少提供運算流程;但缺乏權重,外部開發者無法驗證推薦效果,也無法重現模型。 這與 2023 年 X 初次開源時可見部分參數的情況形成對比,馬斯克透過「展示性開源」回應 Slashdot 等社群對透明度的質疑,卻保住了真正的商業護城河。 Phoenix 也象徵 X 與 xAI 的技術棧已經整合,X 平台以龐大即時互動數據餵養 Grok,再讓 Grok 回頭主導流量分配,形成閉環。 相關報導 馬斯克 X 一刀砍死 InfoFi!Kaito 暴跌 15%,相關應用 API 存取權限全撤銷 中國天才工程師自毀紀錄:偷走馬斯克xAI數據跑路,傳出已被OpenAI、Google、Meta等巨頭封殺 〈X公開演算法原始碼「Phoenix」!與Grok互相餵養,馬斯克選擇保密模型權重〉這篇文章最早發佈於動區BlockTempo《動區動趨-最具影響力的區塊鏈新聞媒體》。


